Геометрический смысл производной

Геометрический смысл производной

Параллельно с Ньютоном, который исследовал физические процессы и пришёл к пониманию о производной своим путём, Лейбниц ввёл определение производной через геометрию.

Для того чтобы разобраться в чём заключается геометрический смысл производной, обратимся к вышеприведённому схематическому рисунку. На нём изображён график функции y=f(x).

Обозначим через P точку, которой соответствует значение функции в точке x0.

Проведём некоторую секущую через точки P и P1. Угол наклона между положительным направлением оси X и этой секущей обозначим через β.

В результате получился прямоугольный треугольник с катетами Δx и Δy. Здесь Δx — это приращение аргумента функции, а Δy — приращение самой функции.

Отношение приращения функции к приращению аргумента есть тангенс угла между секущей и положительным направлением оси абсцисс.

Геометрический смысл производной

Если устремить Δx→0, то точка P1 на графике будет приближаться к точке P, а секущая - менять своё положение относительно графика.

Предельным положением секущей при стремящемся к нулю приращению будет прямая, в которой точки P и P1 совпадут друг с другом. Такая прямая называется касательной к графику в точке P.

Геометрический смысл производной

Геометрический смысл производной заключается в том, что значение производной функции в точке численно равно тангенсу угла наклона касательной к функции в этой точке.

Известно, что уравнение любой прямой имеет такой общий вид: y=k*x+b. Так вот в уравнении касательной к функции в точке P коэффициент k как раз равен значению производной в точке x0

Геометрический смысл производной

На практике часто встречаются задачи на применение геометрического смысла производной. Например, одна из таких задач — это исследование графика функции по заданному графику производной от этой функции.

Прикладные задачи на производную зачастую связаны с физическим понятием производной

Другие статьи
➤ Что такое производная? Понятие производной
➤ Геометрический смысл производной
➤ Физический смысл производной
➤ Что такое дифференциал функции?