Что такое дифференциал функции?

Что такое дифференциал функции?

Понятие дифференциала функции связано с такими важными математическими разделами как дифференциальное и интегральное исчисление и тесно связано с понятием производной функции. Наиболее часто дифференциал применяется для приближенных вычислений, а также для оценки погрешностей формул и измерений.

Определение дифференциала

Дифференциал функции — это линейная часть приращения функции. Говоря о значении дифференциала функции, рассматривают конкретную точку функции и бесконечно малое изменение аргумента.

Пусть xo есть некоторая точка из области определения функции f(x), а Δx - есть беконечно малая величина. Тогда дифференциал функции находится как произведение значения производной функции и приращения её аргумента. Дифференциал функции f(x) обозначается как df(x).

История открытия дифференциала

Чаще всего открытие дифференциально-интегрального исчисления принято связывать с именем Исаака Ньютона, однако, этот факт активно оспаривают учёные со всего света.

Действительно, открытие целого нового направления в науке, столь значимого для её развития, было бы ошибочно считать заслугой только одного учёного. Изначально интегрирование связывали с вычислением площадей и объёмов криволинейных фигур. Такие задачи, как известно, решались ещё во времена Архимеда, поэтому его имя также имеет отношение к открытию дифференциального исчисления.

Также дифференцирование имеет отношение к решению задач на проведение касательных к различным кривым. Данное направление активно развивали греческие математики. В те времена математики столкнулись с трудностью, которую не смогли решить в дальнейшем и представители Нового времени.

Дело в том, что для определения направления прямой требовалось знать координаты как минимум двух точек, а касательная имеет лишь одну точку соприкосновения с кривой. Этот факт натолкнул учёных на мысль о том, что в одной точке кривая может иметь несколько касательных. В то время ученые пришли к выводу, что прямая состоит не из точек, а из отрезков минимальной длины. Таким образом, они считали направление касательной в некоторой точке совпадающим с направлением атомарного отрезка в данной точке.

В дальнейшем учёные Нового времени опровергли данную теорию. В этот период огромный вклад в развитие науки внёс Исаак Ньютон. Ученый сформулировал определения и принципы решения производных, а также основы дифференциального исчисления, которых придерживаются учёные и в наши дни.

Дифференциальное исчисление широко применяется в математике и других науках для решения различных задач.

Геометрический смысл дифференциала

Геометрический смысл дифференциала заключается в следующем: дифференциал функции f(x) равен приращению ординаты касательной к графику функции, которая проведена через некоторую точку с координатами (x,y) при изменении координаты x на величину Δх=dx.

Дифференциал является главной линейной частью функции относительно приращения аргумента. Чем меньше приращение функции, тем большая доля приращения приходится на эту линейную часть.

Таким образом, при бесконечно малом Δх, приращение функции можно считать равным ее дифференциалу. Это свойство дифференциала позволяет использовать его для приблизительных вычислений и оценки погрешностей измерений.

Применение дифференциала в приближенных вычислениях

Поскольку дифференциал функции является частью ее приращения, то при бесконечно малом приращении аргумента он приблизительно равен приращению функции. При этом чем меньше приращение аргумента, тем точнее значение функции. Этот факт даёт возможность использования дифференциалов для приближённых вычислений.

С помощью таких вычислений можно решать различные виды задач. Приближённые вычисления практически всегда связаны с наличием погрешности.

Использование дифференциала для оценки погрешностей

Результаты измерений в большинстве случаев содержат ошибку, обусловленную неточностью измерительных приборов.

Число, несколько превышающее или равное этой неточности, называется «предельной абсолютной погрешностью».

Отношение предельной погрешности к значению измеряемой величины называют «предельной относительной погрешностью».

Для оценки величины погрешностей измерений используют дифференциальное исчисление.

Статьи о производной
➤ Что такое производная? Понятие производной
➤ Геометрический смысл производной
➤ Физический смысл производной
➤ Обобщённая таблица производных
➤ Как найти производную? Правила дифференцирования
➤ Производная сложной функции
➤ Что такое дифференциал функции?